

TECHNISCHE UNIVERSITÄT WIEN

Cs and Sr adsorption capabilities of Clinoptilolite

<u>▲□▶</u> ▲@▶ ▲글▶ ▲글▶

J. H. Sterba

Introduction

- Zeolite is well known for absorption properties
- Porous aluminosilicate mineral with many different structures
- Many applications in agricultural industry
- Due to regular pore structure they are very selective for cations (molecular sieves)
- Selectivity is due to specific mineral

Samples

Four samples were provided, three from Lithos Natural GmbH, one external:

Sample	Name	grainsize	clinoptilolite
Α	LithoFill™100 T	0–125 µm	90%
В	LithoFill™100	0–100 µm	90%
C	LithoGran™2	0.5–2 mm	90%
D	External	0–125 µm	<60%

Check for specific adsorption capabilities for Cs and Sr?

Testing adsorption capabilities

Time dependance

・ロト ・雪 ト ・雪 ト ・ 雪 ・ クタマ

Time dependance

Temperature dependance

▲□ > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

Temperature dependance

・ロット 4回 マイボット ボックタイ

<ロト < 同ト < 回ト < 回ト = 三

Competing lons

Competing lons

Conclusion

- **Sample A** and **B** are very similar
- Difference to Sample C is mainly in grainsize.
- Sample D is markedly less absorbent for Cs and Sr
- Very high specific selectivity for Cs⁺:
 - High speed of absorption
 - Low influence of competing ions
 - Low temperature dependency
- Absorption for Sr²⁺ roughly half of Cs⁺
 - Adsorption for Sr much slower
 - Competing ions have more influence
 - Temperature has much more influence

Outlook

A few questions are still open:

- Have we reached maximum adsorption capability for Cs?
- Higher and different concentrations of competing ions?
- ► Adsorption kinetics for Sr²⁺?

くロン 不得 とくほう くほう 一日

Thank you!

